Discovery of Protein Phosphorylation Motifs through Exploratory Data Analysis

نویسندگان

  • Yi-Cheng Chen
  • Kripamoy Aguan
  • Chu-Wen Yang
  • Yao-Tsung Wang
  • Nikhil R. Pal
  • I-Fang Chung
چکیده

BACKGROUND The need for efficient algorithms to uncover biologically relevant phosphorylation motifs has become very important with rapid expansion of the proteomic sequence database along with a plethora of new information on phosphorylation sites. Here we present a novel unsupervised method, called Motif Finder (in short, F-Motif) for identification of phosphorylation motifs. F-Motif uses clustering of sequence information represented by numerical features that exploit the statistical information hidden in some foreground data. Furthermore, these identified motifs are then filtered to find "actual" motifs with statistically significant motif scores. RESULTS AND DISCUSSION We have applied F-Motif to several new and existing data sets and compared its performance with two well known state-of-the-art methods. In almost all cases F-Motif could identify all statistically significant motifs extracted by the state-of-the-art methods. More importantly, in addition to this, F-Motif uncovers several novel motifs. We have demonstrated using clues from the literature that most of these new motifs discovered by F-Motif are indeed novel. We have also found some interesting phenomena. For example, for CK2 kinase, the conserved sites appear only on the right side of S. However, for CDK kinase, the adjacent site on the right of S is conserved with residue P. In addition, three different encoding methods, including a novel position contrast matrix (PCM) and the simplest binary coding, are used and the ability of F-motif to discover motifs remains quite robust with respect to encoding schemes. CONCLUSIONS An iterative algorithm proposed here uses exploratory data analysis to discover motifs from phosphorylated data. The effectiveness of F-Motif has been demonstrated using several real data sets as well as using a synthetic data set. The method is quite general in nature and can be used to find other types of motifs also. We have also provided a server for F-Motif at http://f-motif.classcloud.org/, http://bio.classcloud.org/f-motif/ or http://ymu.classcloud.org/f-motif/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting protein post-translational modifications using meta-analysis of proteome scale data sets.

Protein post-translational modifications are an important biological regulatory mechanism, and the rate of their discovery using high throughput techniques is rapidly increasingly. To make use of this wealth of sequence data, we introduce a new general strategy designed to predict a variety of post-translational modifications in several organisms. We used the motif-x program to determine phosph...

متن کامل

Identification of Novel Phosphorylation Motifs Through an Integrative Computational and Experimental Analysis of the Human Phosphoproteome.

Protein phosphorylation occurs in certain sequence/structural contexts that are still incompletely understood. The amino acids surrounding the phosphorylated residues are important in determining the binding of the kinase to the protein sequence. Upon phosphorylation these sequences also determine the binding of certain domains that specifically bind to phosphorylated sequences. Thus far, such ...

متن کامل

ELM: the status of the 2010 eukaryotic linear motif resource

Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict ...

متن کامل

Admissible Time Series Motif Discovery with Missing Data

The discovery of time series motifs has emerged as one of the most useful primitives in time series data mining. Researchers have shown its utility for exploratory data mining, summarization, visualization, segmentation, classification, clustering, and rule discovery. Although there has been more than a decade of extensive research, there is still no technique to allow the discovery of time ser...

متن کامل

Effects of Antiproliferative Protein (APP) on Modulation of Cytosolic Protein Phosphorylation of Prostatic Carcinoma Cell Line LNCaP

Antiproliferative protein (APP) isolated from conditioned media of two androgen-independent prostatic carcinoma cell lines, PC3 and Du-145 was shown to inhibit selectively cell proliferation of androgen-dependent prostate cancer cell line LNCaP in a dose dependent manner. This protein was further purified with HPLC using hydrophobic interaction column (phenyl 5PW) and was used to study the modu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011